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i I. INTRODUCTION
The problem that we address is the protection of a set of

i% T identical targets that may come under attack by A 1ldentical
ok attacking weapons. The targets are to be defended by D identical
! defensive interceptors which must be preallocated to defend
' selected targets. The attacker 1s aware of the number of inter-
o, ceptors but 1s ignorant of their allocation.
»r
H In two seminal papers ([6] and [7]; see also [8]) Matheson
- addressed the case where the defender knows the size A of the
;ﬁ potential attack but not its allocation. He represented the
P scenario as a two-person, zero-sum game by allowing the attacker
E and defender to choose allocations x and y independently, and

adopted the expected fraction of surviving targets as the payoff
b function. We refer to this as the basic game.
‘ Later ([3],[4],05]1,[9] and [10]) a number of authors
i developed allocatilon procedures based on linear programming

) solution procedures for solving the game-theoretic problem

ﬁ studied by Matheson. Current modelling is being performed which
utilizes these methods. In all cases, the attack size A 1is

! assumed to be known.

Figure 1 exhibits the value of the basic game as a function

r
.

E of attack size for a typical Matheson game with 1000 targets and
6000 defenders. Each point on the curve labeled "game value"

E represents the proportion of targets surviving an attack of A

' weapons when the attacker knows that D=6000 and the defender
knows A, but neither knows how these weapons are to be deployed.
With both the attacker and defender selecting optimal strategies

G in the sense of game theory, the game value plotted in Figure 1

< represents the outcome of these strategles.

3 A basic assumption implicit in the Matheson game 1s that

B both "players" are acting as though they are playing the same

- game, 1.e., they are both informed of all of the parameters and

L

I

I




A9ILVHLS

1sn8oy

oov
0006=V
ONINASSY
JISN3430
009

INTVA

0001

SNOILVALIS FAILVNYALIV H0d SLINSHY T San3Td
T-98-L1-L
SUINIVLLY J0 HIGWAON
000.L 0009 000S 000¢ 0002 0001 ee

0001 =V

L ONTNNSSY
3SN3430

002

SYOAIAUNS 40 YITWNN 03103dX3

-
sl

v e T e T T LTe T
o PG N o
VRSN e ol

<N

-

e

Ml

\

G




rules of the game. PFor each attack size A, there 1is a specific
game, all other parameters remaining the same.

However, the actual attack size is an option of the attacker,
who can choose to attack with any number of weapons up to his
total inventory. If he is interested only in minimizing the
proportion of surviving targets, the monotonically decreasing
nature of the game value curve will impel him to attack with
his total inventory. If, however, the attacker has other
interests and attacks with fewer than his total inventory, or 1if
the defender overestimates the attacker's maximum inventory, or
i1f a weaker opponent attacks, other results can be expected.

Suppose, for example, that the defender assumes in his
planning an attack of 9000. Knowing this, the attacker actually
attacks with 1000.. If the defender were to use a strategy optimal
against an optimal attack of 1000 (i.e., if the defender knew
which game the attacker had chosen) he could expect about 880
survivors. However, if the attacker were to discover the dcfend-
er's assumption, he could take advantage of 1t by optimizing
against it. Doing so, he could bring the expected number of
surviving targets down to about 720 (see Figure 1).

Alternatively, assume that the defender assumes an attack
size of 1000. The attacker, knowing thls, attacks with 9000.
Had the defender planned on the basis of 9000, the expected
number of survivors would be about 85, but the mis-planning of
the defense would yield an expected number of survivors of about
57 (see Figure 1).

The robust strategiles developed in this paper do not requlre
the defender to assume an attack size. Rather, the defender
chooses a strategy which 1s good over a wlde range of attack
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sizes, though not necessarily best for any particular attack size.
The attacker, knowing that the defender is adopting a robust
strategy, chooses the optimal attack strategy for the number of
weapons he chooses to expend, and the expected number of survlivors
is based on this attack and allocation.

Figure 1 shows the game value, the results of the defense
assuming two attack sizes and the attacker taking adrantage of
thls, and the results of a robust strategy. In the above example,
the robust defense yields expected survivors of 820 of 880 (as
compared with 720 of 880) when the attack is 1000, and 79 of 85
(as compared with 57 of 85) when the attack is 9000.

In the main body of this paper we study the expected number
of survivors under two behavioral assumptions for the defender
and two for the attacker, resulting in four separate cases. The
defender may (a) believe the attacker will use the optimal
strategy of the basic game or (b) believe the attacker will use
a strategy optimal against the defender's robust strategy. The
attacker may (a) use the optimal strategy of the basic game or
(b) use a strategy optimal against the defender's robust
strategy. Thus, including the basic game, we examine filve
‘separate cases and show that a fairly wide range of outcomes
results from the various assumptlons.

In Section II, we summarize the basic game of Matheson and
its equivalent linear program. Section III introduces the notion
of a robust strategy and deflines the behavioral assumptions for
the defender and the attacker. Section IV contains the
mathematlical problems addressed 1n the various cases. 1In Section
V we present an example solved for four combinations of kill
parameters for the defense and the offense. The appendices
discuss alternative physical assumptions on the engagement at

each target.
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IT. THE BASIC GAME

In thils section we summarize the basic game to be discussed 1
and set down the underlyling assumptions and notation. The
summary is based on Matheson ([6] and [7]) and Hogg [4].

b
4
There are: |

T targets of equal value to be defended
A misslles attacking these targets

D defending interceptors.

Integer values of T, A and D are given. We consider T = 1000,
A = 1000, 2000,...,10,000, and D = 6000 in the examples of this
paper.

Also given for each attack and defense allocation is a value
of:

= probability that a target under attack by 1 attacking

P
1] missiles and J defending interceptors will survive,

The particular values of piJ result from specific assumptions
on how the attack and defense at each target interact. In the
original work of Matheson ([6] and [7]), it was assumed that the
attack could be sequentially numbered and that at most one
defender could engage an attacker. 1In our paper, the numerical
work displayed in the main body 1s based on the assumption of a
simultaneous attack repelled by a "uniform defense" at each

target. In Appendlix A we show that this 1s optimal for the
defender when the attack size 1s known and derive an explicit
expression for pij' In Appendix B we present results for the
assumption of sequential attack of unknown size. The Prim-Read

firing doctrine 1is utilized by the defense. Comparisons are
made of results for simultaneous and sequential attacks. In
Appendix C we address the case of sequential attack of known

size, and with a defender "shoot-look-shoot" capability, giving
recursion relations for computing pij for varlous attacks and

defenses.

5
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We assume that (1) at most R attacking missiles can attack
a single target and (2) at most S defending interceptors can
defend a single target. In this paper we set R = S = 10.

The attacker and defender must choose an allocation of their
inventories to the set of targets. Both A and D are known
beforehand, as well as the pij's, but the actual allocations are
unknown to the opponents.

If we set

xi = fractlon of the targets to be attacked by
i1 attacking missiles
and
yJ = fraction of the targets to be defended by

J defending interceptors,
then it has been shown (in the above references) that
S(x,y) = x'Py

gives the fraction of the T targets that are expected to survive
under attack and defense strategles x and y, where

X (xo, cee 5, X
y = (yo, cer s ¥g)
and
P = (piJ)-
The value of the basic game G 1is:

v*(A) = maximum minimum xTPy

S
DRI R
J=0
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T,
7,
.9,
.9,

O 3 O

For each of these a,d pairs are computed, and displayed in
Tables 1-U4:

(a) The basic game value v*(A) = S(x*(A), y*(A)) and
corresponding optimal strategies x*(A) and y*(A) for
A = {1000, 2000,..., 10,000}.

(b) The defender's robust strategy yI under the defender's
assumption that the attacker will use his optimal
strategles x*(A) based on the game value.

(1) The expected fraction of survivors V¥ I(A)
;)

S(x*(A), yI) when the defender 1s correct,

(11) The optimal attacker response x(yI) and
corresponding value v*; II(A) = (S(x(yI),yI)
3
when the defender 1s mistaken.

II

(e¢) The defender's robust strategy y under the defender's

assumptlon that the attacker will base hils attack on
II
yoo.

(1) The expected fraction v*II I(A) = 3
3
S(x*(A),yII) when the defender is mistaken,

(11) The optimal attacker response x(yII) and
corresponding value v¥* (A) =
1T IT IT,II
S(x(y~"),y ") when the defender is correct.

18 :
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V. EXAMPLES

We present four examples to 1llustrate the concepts discussed
in Section III. 1In each of these examples we consider

T = 1000
D = 6000
A= {1000, 2000, ..., 10,000}
with
R=S =10
The survival probabilities piJ are computed by the formula
pyy = (1ma(l-a) /M * LI/ _a(1.q) /1)1 (2=<3710)
where

a = probability that a single attacker will destroy an
undefended target.

d = probabllity that a single interceptor will destroy an
attacker at which it 1s directed.

The basic underlying assumptlon here 1s that the defense will
spread 1ts defenders as uniformly as possible over the attackers.
This assumption 1s Justified in Appendix A, and it 1is shown to
result In a defense which maximizes the probability that the
target will survive.

The four examples contalned herelin differ only in the values
a and d, which are set equal to the a,d pairs:

17
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v¥ o 1(A)

In this case, the defender again solves the above problem
(LP(II,II)) to obtain an optimal solution yII. Here, however, i

the attacker is usling a strategy which 1s optimal for each attack

size A. Thus the value is

IT

T —
V* - * .
II,I(A) x*(A) Py (A e B)
1
16
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subject to:

S(A) hS Poy
s(A) - £(A) < Py

Y s(A) - Rt(A) < Ppy

where y ¢ Y 1s given. Thus the defense sees the problem as

»
: . maximize minimum {(l/v*(A)) maximum {s(A) - (A/T)t(A)}}

yeyY Ae A s(A),t(A)

o

where s(A) and t(A) are restricted as above. But this is
! equivalent to choosing y, p, s(A) for A ¢ A and t(A) for A ¢ A
which solve:

| maximize p "
\- y€Y
?
' subject to:
. N
. pve(A) < s(A) - (A/T)t(A) > LP(II,II)
; s(A) < Pyy
‘ s(A) - t(A) < Py
! rAeK

s(A) - Rt(A) < Ppy

J
J 11

If we denote the solution of this linear program by v~

) and the optimal responses (obtained from (1) above) by x(yII)

(A ¢ A) we have

ITI.7,. 1II -
v A) = x P A e A).
: II,II( ) (y=7) Py ( )
)
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If the solution of this problem is yT, then

e () = x*(a)Tpy? (A ¢ §)

where x*(A) solves LP(0).

v (4)
I,IT

In this case the defender sees the same problem as above
and constructs the same robust strategy yI. Now, however, the
attacker knows yI and hence can optimize against it.

Thus

I

A) = minimum xTPy (A ¢ A)

x € X(A)

*
v I,II(

where yI solves LP(I,I) and where X(A) is defined analogous to Y.

*
v II,II(A)

In this case the defender still wants to solve the problem

maximize minimum {RA(x,y)}
y ey Ae R

but now, however,

RA(x,y) = (1/v*(A)) minimum xTPy (1)
X e X(A)

This 1s a linear program (for each fixed y) and its dual 1is

(1/v#(A)) maximum {s(A) - (A/T)t(A)}

14
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IV. LINEAR PROGRAMMING EQUIVALENTS

Each of the problems described above can be formulated and
hence solved as a linear program. In this section we present the
problems addressed.

In Section II, we derived the game value v¥(A) in terms of
the optimal value of a linear program LP(0). The solution of
such linear programs (one for each value of A) has been denoted
by (x*(A), y*(A)). We now wish to derive expressions for the
expected fractlon of surviving targets under the various
assumptlons. '

vt

By definition, the defense seeks to solve the problem

maximize minimum x*(A)TPy/v*(A)
yedX Ae &

But this 1s equivalent to the linear program

maximize o A
subject to:
yedY r  LP(I,I)
p 20
p < x*(A)TPy/v*(A) for all A ¢ A

13
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ATTACKER RESPONSE I: The attacker employs his optimal game

strategy x*(A) for any A ¢ A.

ATTACKER RESPONSE II: The attacker is capable of recognizing and
optimally adapting to any strategy that the defender employs.

We could, alternatively, view this palr of assumptions as

distinguishing the correctness of the defender's assumptions.

Keeplng in mind that the defender 1s, in all cases, interested

in building a robust strategy, we summarize the four possible

comblnations as follows:

1,1

(Defender I, Attacker I)

I,II
(Defender I, Attacker II)

II,I _
(Defender II, Attacker I)

II,II
(Defender II, Attacker II)

The defender sees the attacker
"uninformed". The defender is
correct. The attacker is
"uninformed".

The defender sees the attacker
"uninformed". The defender is
mistaken. The attacker 1is
"informed".

The defender sees the attacker
as "informed". The defender
i1s incorrect. The attacker is
"uninformed".

The defender sees the attacker
as "informed". The defender
is correct. The attacker 1s
"informed".

12
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of expected surviving value to game value. But he 1s now faced
wlth the question of deflning the expected surviving value for
each attack size. It turns out that this definitlon 1s
critically dependent on the defender's assumptions of the
attacker's behavior, and the correctness of this assumption.

We distinguish two "defender assumptions".

DEFENDER ASSUMPTION I: The attacker will employ his optimal
game strategy x*(A) for any particular attack size A.

DEFENDER ASSUMPTION II: The attacker can discover, and
therefore optimize against, whatever strategy the defender

employs.
éf Thus, with assumption I, the defender feels that the
- attacker 1s oblivious to the defender's desire to install a
o rotust defense. In game-theoretlc terms, the defender assumes
e that the attacker, in spite of the fact that he will choose the
- game (i.e., choose A), views the defender as playing the game
h optimally, and hence will use his own optimal strategy x¥*(A).
re Such an assumptlion is, of course, vulnerable to
o exploitation. Either player in a two-person, zero-sum game can
expect the game value 1f he employs any combination of his active
ll strategles, as long as his opponent uses his optimal game
09 strategy. However, a player who devliates from his optimal game

'@ strategy 1s wvulnerable, and can generally not expect the game
value if his opponent learns of the deviation.

Eg With assumption II, we gilve the defender the foresight or
good sense to recognize his opponent's capability to predict and
to take advantage of a particular defense strategy.

In order to determine the actual expected outcomes RA(x,y*)
for a given y*, we further distinguish a pair of alternatives
reflecting the correctness of the defender's assumptlons.

11
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Thus we seek to determine:

maximum minimum {RA(x,y)}
yeVY Ae A

where
S S
Y = {(yo,...,ys): Zyj =1, ijj = D/T, Yy > O}
3=0 J=1

xs= {1000, 2000,...,10,000}

As it stands, the problem 1s not well-defined because we have not
specified the vector x. We do thls by making assumptions on the
ways that the defender views hls opponent and on the cérrectness
of these views.

We adopt the ratio measure because we wish to do relatively
well in all cases. In particular, we wish to avold the situations
discussed 1n the introductory sectlon. We do not wish to plan
for a small attack and fail almost cqmpletely if the attack 1is
large, for we are interested in preserving some misslles for
finite deterrence. Also, we do not wish to plan for a large
attack and lose a substantial portion of our force if the attack
1s small, in order to deny any potential aggressor an attractive
small exchange of his missiles for ours. Thus, we are concerned
about the behavior of the entire range of the expected survivors
as a function of attack size. We choose a ratio measure rather than
a difference measure because this problem 1s in the context of
many other strategic nuclear weapon planning problems, and we
cannot visuallize how a difference measure across a wide range
of attacking weapons would fit into the overall planning context.
We are satisfied with performing relatively well over the range
of interest.

The defender desires to choose a strategy y* which is
"robust against attack size", i.e., maximizes the smallest ratio

10
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ITI. STRATEGIES ROBUST AGAINST ATTACK SIZE

For each possible attack size A, there 1s an assoclated game
value v¥(A), as well as a pair of (generally mixed) optimal
strategies (x*(A), y*(A)). However, we would not expect the
attacker to divulge the specific value of A before the attack
begins. Since y*¥(A) is optimal for the defender only over an
interval [A-,A+], it generally will not represent an optimal
strategy for values outside of this interval. We are therefore
led to look for a single strategy which will be "robust" over
a range of A values so broad that no single defense y¥*(A) is
optimal for the basic game described in the previous section.

Obviously, from an attacker's point of view, if he wished
to minimize the total expected fractlon of targets surviving, he
would attack with his largest arsenal because v*(A) is a non-
increasing function of A. A defender who knew that the attacker
would use an entire arsenal A would prepare for an attack of that
size and hence use the strategy y*(A).

If, however, A were not known, or known only to be an upper
bound on the attacker's arsenal, and if the defense had to be
concerned with smaller attacks, y*(A) would generally be sub-
optimal.

We assume that there 1s given a value A' which represents
an upper bound on the attack size. 1In this paper we set A' =
10,000.

As a measure of robustness, we choose the ratio defined by
the expected fraction of surviving targets SA(x,y) for an attack
of size A divided by the optimal game value v*(A):

Ry (x,y) = SA(x,y)/v*(A)

and seek to determine a defense strategy y* which maximizes the
smallest of these ratlos over a set of A values.
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we obtain

If we assume that

Py 2 p,jk

for each k (more attacking weapons on a target will decrease the
probability of survival for a fixed number of defenders), then

P1 - PJ >0

so that we may assume t > 0, and therefore s >0, i.e., non-
negatlivity conditions may be 1mposed on all varlables of the
above linear program. Non-negatlvity is convenient for
computational reasons.

Let x*¥(A), y*(A) and v¥*(A) denote the solution of the above
linear program. Note that the dual variables associated with the
inequality constraints of LP(0) constitute x*(A).

Note that LP(0), as a function of the parameter A (which
occurs in the objective function only), defines the value v*(A)
for each A > 0. It 1is well-known that v*(A) 1s plecewise linear
and convex. It 1is also clearly monotonically nonincreasing.
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This value can be used to measure the effectiveness of a defense
of size D against an attack of size A, where the probabilities

piJ are given.

By taking the dual of the inside problems defining G, we
obtain the linear program:

!! v#(A) = maximum (s - (A/T)t] b

- suhject to:

v

- s =t < Ply

e

-’: .

S - Rt < Ppy » LP(0)
b s

2 9=t
S
;, > Jyy = D/T
J=1
y; 20

g J J

EF where Pi denotes the ith row of P.

»

Note that, for any feaslble y, at least two of the

3! inequality constraints above must be binding at an (s,t) pair
> which solves LP(0). Let 1 < j denote the indices of two such
fa constraints. From

o
( s - 1t = Piy
f?\ s - Jt = PJy
-~

1y 7

CaT o f‘.r'. w

R N R Ay T B . o P DL T L , AP L bt .
et e it s, e o o O BRI R b e oo T o .,Ln AN {a

., ~, 1,"1"\’}. "’ 'p’.'--,-, A PR
AN OOT R (S ’-é . L

THE! SIPY T S A mg MY T

r

R S 484

LA DRSS AP S AR,



(Y1) [T YN - . . . . . . . . . (77} 08

10 . 0oL . . . . . . . . . e ”0e's

(11} . . [ M . . . . . . . . (71) !..

[$]) . . . 000'L . . . . . . . e 08°L o-re-21-2¢
02 . . . . 001 . . . . . . 2 0's

12¢ . . . . 199° . . X1 . . . ”e 000'S

[ 2 . . . . [+ 14 . . 19 . . - ”r ’.‘

"ws . . . . . . . 008’1 . . . 188 200°t

899 . . . . . . . [ . 008 . [» 74 900°2

1N . . . . . . . . . . 000't "s 088’

—
-
3

=
-
>
—
=’
~
»
——
<
4
-
=

oA v
(05570 ‘e ‘e ‘e ‘e ‘e ‘e ‘pp00 ‘vL'0 ‘6€0°0 ‘202°0) = yA Il ISVI HIANIS3Q

.NG. g.- . . . . . ] . . . . ‘N.. !-.ﬂ

"o . 0000 . . . . . . . - . " 200's

ue . . 0el . . . . . . . . e "na's

e . . . 0001 . . . . . . . =L 0L

ue . . . oy | . . . . . m . "ne 200'8

PS. 3 . . §. . . . . [ ﬂa. . FNM !.a

”t . . . 00S . . . . . ("8 . (T3 00y

—.h‘- . . . ﬂﬂﬂ . . . . . hs- . !. !-ﬂ —~
[ . . . 19% . . . . - [<x B . %L 00°2 N
s. 3 . . . . . . . . §.F . “8 !.F

v . (x (1) N v

.N.. g.— . . . . * . ] . . . §. . * . . L) . . . . !. !..P
'... - ! [ . . . - - - - . - §. . . . - . . . . . !. !o.
E. . . ‘.F . . . . . ] . . g. . . . . . . - . . !. ‘.-
b1 . . . 001 . . . . . . . 009" . . . . . . . . ) !. [ ¥4
"we . - . (L . . M %0 80 . ees’ . . . . . . . 100 200 g | W'y
1 ne . . . . el . kL oMo wm 3%y . wy . . . st . i . 6E1° 690" S91° ) ome'S
" . . . . ”®s . ist° . €90 " o L2 4 . ”e . e . . . d 200 e’ eee'r
1 %S . . . 00y . (1% . "o LLC B . no . 198" . M . . W/ e e
®L . . . . % . )wy . 50 ;™8 pes | e’ ° "o . 19 i ° . . m 191§ o002
L) . . M . (24 . €0’ M 31e 910" 8L § e . "we' ° 15t . - . M W/ 0 ] ey

V)er (V)ex . )k v
NOILAT0S WYY JisvE

v we A e W s FrS W El oy B e B S SR ST RN Ll




L-v8-TL-TH

.. s [T} . . . . . . . . . . 802 §.-—

m ”w . "t . . . . . . . - - " 000°'s

” aﬂ. . . !.P - .- . [ ) - - - -Nﬂ §-

” -ﬂ”. - . . ’.— Y . . 3 . . . .hﬂ. §.N

v. ny . . . fi . . [ 114 . . . . s 800°9

w g. . 3 - a. . . h’. - . . . hﬂﬂ !.ﬂ

w a. - - . . Y - g.— . ] . 3 .N.. !..

.-v‘ a. . . . - . 3 . g.— . - ) E !-ﬂ

% e . . . . . . . 008" . 00S° . sy 000°2

.1 [+ . . . . . . . - . 2001 . 108" 00t

m M (A (v Mo v

k

w (9€S°0 ‘e ‘o ‘e ‘e ‘e ‘yE0'0 '8L0°0 ‘LOL'0 ‘650°0 ‘L8L°0)=yA 1l ISVI HIANII0

m ”ne 000°1 . . . Y . . Y . . . ”"e g.o—

w [Tt N [} . - . . . . . . 111y » (774 !.a

pr e w . . . . o . . . wr o s 00e's

m i 199 . . . . . . . Y ﬂﬂﬂ . 'ﬂ. !.h

m "y e . . . . . - . . e . o "o’y

1 pree m . . . . . . . e uns "'

" soc’ cee . . . . . . . . 199 . 0’y 0s°y

-,_ [~ T . . . . . . . . [Ty . w 0's

. ses ur . . . . . . . LR - . sy L} n2¢

v, g. 3 » . - [ . . . . s.— ) i. !-P

" —<v= .—c) A—avn —‘v— ._.D v

(009°0 ‘o ‘e ‘e ‘e ‘e ‘e ‘o ‘e ‘e ‘goy0) = _> -] 3S¥J H3AN3434

4
ﬁ. g.ﬂ ] . . . * . . . L[] . !. . - - . . . ! !..P
gﬂ. g. s'. . . - - L . . g [ 'ﬁ. » . . - ) !. Na. !-.

] 2 oy s . . . . W 0 650 s s w» . . c e s e ] wee
ose’ 180" [ {3 18¢° . . . . "o [ 2 690 . [ 23 [/ . . [ " ne 0’e | WL
o [ TN Fily [+ 1N [ 118 [ ]} . i3 80’ o 190 . ur m . Fti Uy " (1, 8 e | W'y
i ”»t’ 001" " €80’ 80 <80 3wy une "0’ [ 11 ] 8 "l t: 1% "o 6690’ ’ne’ o Uy 150 ] 'S
(*4 1% [ we L0 0’ 90’ 190 190° Sse’ 950 e "l 1N "o [ -8 | 71 o Uy 159 | W'y
al 990" 090" £80° 29%0° (1, ) 10 "o "o (L, b4, ) (L1 ”»l’ {8 " [ - [ 71 - U e | ses't
sy o o’ - ”©ee’ £ "©o [ - 2 e w 70 ey "»l - 1% "o [~ 3 e wm Uy 0 jam
108 t2. 020 [ JU e’ ne 10 ({0 F10- 3 ne "ne [ 2 3 "l t< N "ne [ .- & s - ) t71 10 ] 90t
v).4 (v)ex (v).h

NOILNT0S WYY JISVE
6° ‘6" = p‘e YOd SHIDALVHLIS ANV SHANIVA .4 °=TABL
g o R Ty YR N A Y] | VNG  EEEECUNVEEEE  ANEEC/ACIIN AR P UL A AL N RN

ML S A AN 4 KA -




Figures 2-5 display the expected number of survivors as a
function of the number of attackers for the cases studied.

The expected number of survivors always equals the game
value in I,I. This is so because the active strategies (those
pure strategles corresponding to positive components of a mixed

I are always among the active strategies of y¥(A).

strategy) of y
It is well-known in game theory that one player in a two-person
zero-sum game can play his active strategies with any probability
distribution and recelve the game value provided that his
opponent 1s playing his optimal strategy. Also, the robust
strategy yII ylelds expected numbers of survivors that are

nearly identical to the game value when the attacker 1s

uninformed of the defender's strategy.

The worst case for the defender 1is situation I,II, where the
attacker takes advantage of the defender's 1incorrect assumption
about the attacker's behavior. Note that the outcome for the
smaller attacks differs substantially from the game value while
the outcome for the larger attacks 1s the same.

By contrast, situation II,II lies below the game value for
all attacks, being superior to I,II for smaller attacks and
slightly inferlor to I,II for larger attacks.
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SIMULTANEQUS ATTACK




SIMULTANEQUS ATTACK

Here we derive the particular expression adopted to compute
the pij's. We assume that a single target 1s under a simultaneous
attack by A identical missiles, and is being defended by D
identical interceptors. Let

d = probability that a defending interceptor will destroy
the attacking missile at which 1t 1is directed,

a = probability that an attacking missile will destroy the
target, given that it evades all defending inter-
ceptors.

We assume that the defense can see the entire attack, and must
decide on the number of interceptors that it assigns to each of
the attacking missiles.

It 1s easy to see that the probability of the target
surviving an attack of nJ attacking missiles, each of which are
belng attacked by J defending interceptors, 1is

(1 - a1 - a)yd)7y
so that the probability of the target surviving is

D
P(A,D) = (1 -a(l - a9 . (2)
3=0

The defender wishes to maximize this.
We wish to show that the "uniform defense" obtailned by

spreading the D 1nterceptofs as equally as possible over the A
attackers 1is optimal.

Consider any allocation of interceptors to attackers which

1s not uniform. Then there 1s a palr 1 < J with n nj > 0 where

1,
1+ 2 < J. Consider a new (and more uniform) allocation obtained




e " T T T—_r

by allocating i + 1 interceptors to one of the n, attackers, and

i

J - 1 interceptors to one of the nJ attackers. The probability

that the target now survives is

(1 -a(l - )Y - aa - ayd-1

(1 - a(l - &)1 - ax - a)dy

times the o0ld probability, and thils is easily shown to be
greater than 1.

Thus the most uniform of defenses asslgns

[y
[}

[D/A] defenders to n; = A (1 - <(D/AD) attackers

and

[D/A] + 1 defenders to nJ = A (D/A) attackers

[\
[}

(where [x] and (x> denote the integer and fractional parts of
X).

Substituting these values into (2) yields

P(A,D) = (1-a(1-d) (D7AJ+1yAKD/A> ;1 . (1 _q) [D/AT)A(1-<D/AD)

Table 5 gives the numerical values of piJ for the examples ;
presented in Section V. i
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o 1 2
0 | 1.0000 1.0000 1.0000
1 .3000 7900 .9370
2 .0800 2310 5241
3 0210 o711 1872
4 .08t 0213 .0562
5 .0024 0064 0169
] 0007 0019 .0051
7 .0002 0006 .0015
8 .0001 0002 .0005
9 .0000 0001 .0001
10 .0000 .0000 .0000
7.10-88-1

] 1 2
0 | 1.0000 1.0000 1.0000
1 3000 9300 .9930
2 .0900 .2190 .8649
3 .0270 .0837 .2595
4 .0081 0251 L0778
5 .0024 .0075 .0234
] .0007 0023 .0070
7 .0002 .0007 .0021
8 0001 0002 .0006
9 0000 .0001 .0082
10 .0000 .0000 .0001
7.19-88-2

D 0 1 2
0 | 1.0000 1.0000 1.0000
1 .1000 .7300 .9190
2 .0100 .0730 .5329
3 .0010 .0073 .0533
4 .0001 .0007 .0053
$ .0000 .0001 .0005
[] .0000 .0000 .0001
7 .0000 .0000 .0000
8 .0000 .0000 .0000
9 .0000 .0000 .0000
10 .0000 .0000 .0000
7-19-88-3

A0 0 1 2
0 | 1.0000 1.0000 1.0000
1 1000 .9100 .9910
? .0100 .0910 8281
3 .0010 .0091 .0828
[ 0001 .0009 0083
3 000 .0001 .0008
] .0000 .0000 .0001
7 .0000 .0000 .0000
] .0000 .0000 .0000
9 .0000 0000 .0000
10 .0000 .0000 .0000

7.19-08.4
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SEQUENTIAL ATTACK OF UNKNOWN SIZE

When the targets are under attack by an unknown number of
attackers, the "Prim-Read" firing doctrine may be 1mposed at the
targets (see, e.g., 7 7). 1In this context, if there are D
defenders at a target, we assume that d(1l) are fired at the first
attackers, d(2) at the second, and so on, where

‘iid(J) =D
j=1

and where the d(j)'s are selected so that

(1 - a(1 - d)d(J))) /A}

max {(1 -

A=1,2,3... J

na e

is minimized. Here a and d are defined as in Appendix A, and

the quantity in brackets above 1s the probability that the target
is destroyed per attacking weapon. In other words, the defense
is set so that the attacker is (approximately) indifferent to the
total number of RV's that he attacks with, in that their unit
effectiveness 1s about the same.

With the firing doctrines set for each D=1,2,..., the
values P(A,D) are computed from

A
P(A,D) = (1 -a(1 - )80y |
J=1
Table 6 lists these values for the single case a,d = .7, .9.
Figure 6 exhibits the differences between the game values for the

simultaneous and sequential cases.

II

The robust strategy y in the case of sequentlal attack

of unknown size 1is

y*1 = (0.245, 0.000, 0.034, 0.056, 0.068, 0.080, 0.020, 0.000,
0.000, 0.000, 0.497) .
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SEQUENTIAL ATTACK OF KNOWN SIZE

Here we address the case where the attack 1s "sequential",
i.e., there 1is enough time between successive attackers that they
can be ordered and the attack size is known. We define, as
before:

P(A,D) = probability that the target survives, given
that 1t 1s under attack by A missiles and is
optimally defended by D defenders.

Obviously, 1f the defender knows the value of A, he will defend
uniformly according to the result of Appendix A. (A simultaneous
attack can be considered sequential by numbering the attackers in
any order.)

However, if the defender has a shoot-look-shoot capability,
and sufficient time between arrivals, he can choose to structure
his defense in volleys, with the prospect of saving defenders for
use against future attackers.

Suppose the defender has time for two volleys against each
incoming attacker. Let a be, as before, the kill probability of
an attacking missile. Let

d = probability that a defending interceptor will destroy
an attacking missile in the first volley

and
e = probabllity that a defending interceptor will destroy
an attacking missile in the second volley.
Let
d(A) = number of interceptors to shoot at tle Jirst of A
attacking missiles in the first volley
and

36
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e(A) = number of interceptors to shoot at the first of A
attacking missiles in the second volley, given that
the first volley has failled.

Then

1-d(1-a)3™®) 15 the probability that the first volley 1is

successful,

(1-a)2A) (1_(1-¢)2®)) 15 the probability that the first
volley fails but the second 1s
successful,

and
(1-a)9A) (1_6)8(A) (1_4) 1s the probability that both
volleys fall and the attack also
fails.
The following recursion holds:
P(A,D) = max {(1-1-)¥ ™)y p(a-1,p-a0a))
d(A),e(n) ¢ I°
d(A) + e(A) < D + (1-)3 M) (1-a(1-)°A))p(a-1,D-a(a)-e (a))}

with
+
P(0,D) =1 for all De I .

Given a, 4 and e, the recursion can be solved by dynamic
programming to determine P(A,D) = Pyy- Note that the solution
of this recursion would agree with the results of Appendix A
in the case where e=0.

Obviously, the above recursion could be extended if the
defender had more than two opportunities to protect himself.

Shoot-look-shoot capabllities in the Prim-Read context have
also been investigated (Falk [2]).
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